Cosinus et sinus de 5pi/12

Modifié par Juliedrappier

Énoncé

Soit z1=3+i3 , z2=62i et Z=z1z2 .

1. Calculer de deux manières différentes la forme algébrique de Z .

2. En déduire que cos(5π12)=624 et que sin(5π12)=6+24 .

3. En utilisant ce qui précède et la formule d'addition (donnant cos(a+b) pour a et b réels), résoudre dans R l'équation : (62)cos(x)(6+2)sin(x)=23 .

Source : https://lesmanuelslibres.region-academique-idf.fr
Télécharger le manuel : https://forge.apps.education.fr/drane-ile-de-france/les-manuels-libres/mathematiques-terminale-expert ou directement le fichier ZIP
Sous réserve des droits de propriété intellectuelle de tiers, les contenus de ce site sont proposés dans le cadre du droit Français sous licence CC BY-NC-SA 4.0